Dissemin is shutting down on January 1st, 2025

Published in

38th Annual IEEE Conference on Local Computer Networks

DOI: 10.1109/lcn.2013.6761275

Links

Tools

Export citation

Search in Google Scholar

A Game-Theoretic Spectrum Allocation Framework for Mixed Unicast and Broadcast Traffic Profile in Cognitive Radio Networks

Proceedings article published in 2013 by Muhammad Junaid Farooq, Muddassar Hussain, Junaid Qadir ORCID, Adeel Baig ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

In this paper, we present a game theoretic framework for spectrum allocation in distributed cognitive radio networks containing both unicast and broadcast traffic. Our proposed scheme aims to minimize broadcast latency for broadcast traffic and minimize interference and access contention for both types of traffic. We develop a utility function that ensures that both objectives are met yielding a higher network throughput. Our proposed spectrum allocation game is also formulated as a potential game and is guaranteed to converge to a Nash equilibrium if the sequential best response dynamics is followed. A proof of concept of the proposed algorithm has been implemented on the Orbit radio testbed and the results verify the convergence of the potential game. Our simulation and experimental results also reveal that the choice of utility function improves the average network throughput for a mixed traffic profile.