Dissemin is shutting down on January 1st, 2025

Published in

Institute of Electrical and Electronics Engineers, IEEE Transactions on Multimedia, 1(13), p. 14-28, 2011

DOI: 10.1109/tmm.2010.2087320

Links

Tools

Export citation

Search in Google Scholar

Collaborative Face Recognition for Improved Face Annotation in Personal Photo Collections Shared on Online Social Networks.

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Using face annotation for effective management of personal photos in online social networks (OSNs) is currently of considerable practical interest. In this paper, we propose a novel collaborative face recognition (FR) framework, improving the accuracy of face annotation by effectively making use of multiple FR engines available in an OSN. Our collaborative FR framework consists of two major parts: selection of FR engines and merging (or fusion) of multiple FR results. The selection of FR engines aims at determining a set of personalized FR engines that are suitable for recognizing query face images belonging to a particular member of the OSN. For this purpose, we exploit both social network context in an OSN and social context in personal photo collections. In addition, to take advantage of the availability of multiple FR results retrieved from the selected FR engines, we devise two effective solutions for merging FR results, adopting traditional techniques for combining multiple classifier results. Experiments were conducted using 547 991 personal photos collected from an existing OSN. Our results demonstrate that the proposed collaborative FR method is able to significantly improve the accuracy of face annotation, compared to conventional FR approaches that only make use of a single FR engine. Further, we demonstrate that our collaborative FR framework has a low computational cost and comes with a design that is suited for deployment in a decentralized OSN.