Published in

Elsevier, Biophysical Journal, 6(77), p. 3277-3286, 1999

DOI: 10.1016/s0006-3495(99)77158-4

Links

Tools

Export citation

Search in Google Scholar

Time-Resolved Absorption and Photothermal Measurements with Recombinant Sensory Rhodopsin II from Natronobacterium pharaonis

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Purified wild-type sensory rhodopsin II from Natronobacterium pharaonis (pSRII-WT) and its histidine-tagged analog (pSRII-His) were studied by laser-induced optoacoustic spectroscopy (LIOAS) and flash photolysis with optical detection. The samples were either dissolved in detergent or reconstituted into polar lipids from purple membrane (PML). The quantum yield for the formation of the long-lived state M(400) was determined as Phi(M) = 0.5 +/- 0.06 for both proteins. The structural volume change accompanying the production of K(510) as determined with LIOAS was DeltaV(R,1) </= 10 ml for both proteins, assuming Phi(K) >/= Phi(M), indicating that the His tag does not influence this early step of the photocycle. The medium has no influence on DeltaV(R,1), which is the largest so far measured for a retinal protein in this time range (<10 ns). This confirms the occurrence of conformational movements in pSRII for this step, as previously suggested by Fourier transform infrared spectroscopy. On the contrary, the decay of K(510) is an expansion in the detergent-dissolved sample and a contraction in PML. Assuming an efficiency of 1.0, DeltaV(R,2) = -3 ml/mol for pSRII-WT and -4.6 ml/mol for pSRII-His were calculated in PML, indicative of a small structural difference between the two proteins. The energy content of K(510) is also affected by the tag. It is E(K) = (88 +/- 13) for pSRII-WT and (134 +/- 11) kJ/mol for pSRII-His. A slight difference in the activation parameters for K(510) decay confirms an influence of the C-terminal His on this step. At variance with DeltaV(R,1), the opposite sign of DeltaV(R,2) in detergent and PML suggests the occurrence of solvation effects on the decay of K(510), which are probably due to a different interaction of the active site with the two dissolving media.