Published in

American Chemical Society, Journal of Physical Chemistry C, 7(119), p. 3456-3465, 2015

DOI: 10.1021/jp510837q

Links

Tools

Export citation

Search in Google Scholar

Characterization of Planar Lead Halide Perovskite Solar Cells by Impedance Spectroscopy, Open-Circuit Photovoltage Decay, and Intensity-Modulated Photovoltage/Photocurrent Spectroscopy

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Thin film lead halide perovskite cells, where the perovskite layer is deposited directly onto a flat titania blocking layer, have reached AM 1.5 efficiencies of over 15%,1 showing that the mesoporous scaffold used in early types of perovskite solar cells is not essential. We used a variety of techniques to gain a better understanding of thin film perovskite cells prepared by a solution-based method. Twelve cells were studied, which showed AM 1.5 efficiencies of ∼11%. The properties of the cells were investigated using impedance spectroscopy, intensity-modulated photovoltage spectroscopy (IMVS), intensity-modulated photocurrent spectroscopy (IMPS), and open-circuit photovoltage decay (OCVD). Despite the fact that all 12 cells were prepared at the same time under nominally identical conditions, their behavior fell into two distinct groups. One half of the cells exhibited ideality factors of m ≈ 2.5, and the other half showed ideality factors of m ≈ 5. Impedance spectroscopy carried out under illumination at open circuit for a range of intensities showed that the cell capacitance was dominated by the geometric capacitance of the perovskite layer rather than the chemical or diffusion capacitance due to photogenerated carriers. The voltage dependence of the recombination resistance gave ideality factors similar to those derived from the intensity dependence of the open-circuit voltage. The IMVS time constant was determined by the product of the geometric capacitance and the recombination resistance. The two types of cells gave very different OCVD responses. The cells with m ≈ 2.5 showed a persistent photovoltage effect that was absent in the case of the cells with higher ideality factors. The IMPS responses provide evidence of minor efficiency losses by recombination under short-circuit conditions.