Published in

American Physical Society, Physical Review Letters, 4(99)

DOI: 10.1103/physrevlett.99.046803

Links

Tools

Export citation

Search in Google Scholar

Defect-Controlled Transport Properties of Metallic Atoms along Carbon Nanotube Surfaces

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The diffusion mechanism of indium atoms along multiwalled carbon nanotubes is studied by means of photoemission spectromicroscopy and density functional theory calculations. The unusually high activation temperature for diffusion (approximately 700 K), the complex C 1s and In 3d5/2 spectra, and the calculated adsorption energies and diffusion barriers suggest that the indium transport is controlled by the concentration of defects in the C network and proceeds via hopping of indium adatoms between C vacancies.