Published in

IOP Publishing, Journal of Micromechanics and Microengineering, 5(23), p. 055025

DOI: 10.1088/0960-1317/23/5/055025

Links

Tools

Export citation

Search in Google Scholar

Diamond turning of small Fresnel lens array in single crystal InSb

Journal article published in 2013 by R. G. Jasinevicius, J. G. Duduch, G. A. Cirino, P. S. Pizani ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A small Fresnel lens array was diamond turned in a single crystal (0 0 1) InSb wafer using a half-radius negative rake angle (−25°) single-point diamond tool. The machined array consisted of three concave Fresnel lenses cut under different machining sequences. The Fresnel lens profiles were designed to operate in the paraxial domain having a quadratic phase distribution. The sample was examined by scanning electron microscopy and an optical profilometer. Optical profilometry was also used to measure the surface roughness of the machined surface. Ductile ribbon-like chips were observed on the cutting tool rake face. No signs of cutting edge wear was observed on the diamond tool. The machined surface presented an amorphous phase probed by micro Raman spectroscopy. A successful heat treatment of annealing was carried out to recover the crystalline phase on the machined surface. The results indicated that it is possible to perform a 'mechanical lithography' process in single crystal semiconductors.