Published in

Canadian Science Publishing, Canadian Journal of Zoology, 7(92), p. 591-601, 2014

DOI: 10.1139/cjz-2013-0183

Links

Tools

Export citation

Search in Google Scholar

Holding our breath in our modern world: will mitochondria keep the pace with climate changes?

Journal article published in 2014 by Pierre U. Blier ORCID, Hélène Lemieux, Nicolas Pichaud
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Changes in environmental temperature can pose considerable challenges to animals and shifts in thermal habitat have been shown to be a major force driving species’ adaptation. These adaptations have been the focus of major research efforts to determine the physiological or metabolic constraints related to temperature and to reveal the phenotypic characters that can or should adjust. Considering the current consensus on climate change, the focus of research will likely shift to questioning whether ectothermic organisms will be able to survive future modifications of their thermal niches. Organisms can adjust to temperature changes through physiological plasticity (e.g., acclimation), genetic adaptation, or via dispersal to more suitable thermal habitats. Thus, it is important to understand what genetic and phenotypic attributes—at the individual, population, and species levels—could improve survival success. These issues are particularly important for ectotherms, which are in thermal equilibrium with the surrounding environment. To start addressing these queries, we should consider what physiological or metabolic functions are responsible for the impact of temperature on organisms. Some recent developments indicate that mitochondria are key metabolic structures determining the thermal range that an organism can tolerate. The catalytic capacity of mitochondria is highly sensitive to thermal variation and therefore should partly dictate the temperature dependence of biological functions. Mitochondria contain a complex network of different enzymatic reaction pathways that interact synergistically. The precise regulation of both adenosine triphosphate (ATP) and reactive oxygen species (ROS) production depends on the integration of different enzymes and pathways. Here, we examine the temperature dependence of different parts of mitochondrial pathways and evaluate the evolutionary challenges that need to be overcome to ensure mitochondrial adaptations to new thermal environments.