Published in

Elsevier, Fuel, 1(92), p. 145-157, 2012

DOI: 10.1016/j.fuel.2011.07.025

Links

Tools

Export citation

Search in Google Scholar

Partitioning of trace inorganic elements in a coal-fired power plant equipped with a wet Flue Gas Desulphurisation system

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The abatement capacity of trace inorganic elements was studied in a large Pulverized Coal Combustion (PCC) power plant equipped with a wet limestone Flue Gas Desulphurisation (FGD) system. High proportions of most elements were retained as fly ash as consequence of the efficiency of the electrostatic precipitator (ESP, 99.6% of fly ash) and slag (11%). The most volatile elements, such as S and F are retained by the FGD gypsum, and Cl by the filtered water; whereas the moderately volatile elements, As and B, are retained mainly by fly ash, reaching very high abatement efficiencies for these elements when considering the whole plant (>92%). Selenium and Hg are still retained by the whole system with relatively high proportions (89% and 67%); however a prominently proportion is emitted; Se (11%) and Hg (29%), attaining gaseous/PM rate at the emissions reaching 0.08 and 290, respectively. The gaseous emissions are below the limits according to the European directive 2001/80/EC for large combustion plants and the PRTR threshold values with the exception of Hg emissions and particulate Se, As, Zn, Cu, Ni, and Cr. Remediation actions to prevent and/or reduce the gaseous and PM emissions as well as the determination of leachable potential of trace inorganic pollutants retained in FGD gypsum, especially F in view of its disposal, are of significant relevance.