Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Journal of Hazardous Materials, 1-3(179), p. 35-42

DOI: 10.1016/j.jhazmat.2010.02.053

Links

Tools

Export citation

Search in Google Scholar

Removal of COD and color from hydrolyzed textile azo dye by combined ozonation and biological treatment

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The application of ozonation has been increasing in recent years, the main disadvantage of this type of treatment being related to the by-products, which can have toxic and carcinogenic properties, and therefore should be studied further. In this study, the combined treatment of ozonation and subsequent biological degradation with a biofilm, to reduce the color and chemical oxygen demand (COD), was investigated. The experimental part of the study consisted of two phases. The first phase was the ozonation process, the results obtained demonstrated that the ozonation of Remazol Black B dye at pH values of 3-11, was effective, partially oxidizing and completely decolorizing the effluent, even at relatively high concentrations of the dye (500 mg/L). Color removal efficiencies greater than 96% were obtained in all cases. The degradation kinetics of ozone is a pseudo-first-order reaction with respect to the dye concentration. It was possible to verify that the ozonation process as a pre-treatment increases the dye degradation efficiency. For the biological treatment, an increase in ozonization time increased the dye concentration reduction in hydrolyzed dye synthetic effluent. The toxicological results of the tests with Daphnia Magna showed that there is an increase in toxicity after ozonization and a decrease after submitting the ozonized synthetic wastewater to biological treatment with a biofilm.