Published in

Wiley, Biotechnology Progress, 3(19), p. 1000-1005

DOI: 10.1021/bp025733x

Links

Tools

Export citation

Search in Google Scholar

On-Line Monitoring of Cell Growth and Cytotoxicity Using Electric Cell-Substrate Impedance Sensing (ECIS)

Journal article published in 2003 by Caide Xiao, John H. T. Luong ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

An on-line and continuous technique based on electric cell-substrate impedance sensing (ECIS) was developed for measuring the concentration and time response function of fibroblastic V79 cells exposed to mercury chloride and 1,3,5-trinitrobenzene (TNB). Attachment, spreading and proliferation of V79 fibroblastic cells cultured on a microarray of small gold electrodes precoated with fibronectin were detected as resistance changes. The response function was derived to reflect the resistance change as a result of cell attachment, spreading, mitosis and cytotoxicity effect. Exposure of V79 cells to mercury chloride or TNB led to alterations in cell behavior, and therefore, chemical cytotoxicity was easily screened by measuring the response function of the attached and spread cells in the presence of inhibitor. The half inhibition concentration, the required concentration to achieve 50% inhibition, was obtained from the response function to provide information about cytotoxicity during the course of the assay. A simple mathematical model was developed to describe the responses of ECIS that were related to the attachment, spreading, and proliferation of V79 fibroblastic cells. The novel results of this paper are mainly characterized by the systematic study of several parameters including the cell number, detection limit, sensor sensitivity, and cytotoxicity, and they may motivate further research and study of ECIS sensors.