Dissemin is shutting down on January 1st, 2025

Published in

American Association of Immunologists, The Journal of Immunology, 9(192), p. 4184-4191, 2014

DOI: 10.4049/jimmunol.1302091

Links

Tools

Export citation

Search in Google Scholar

CTLA-4 Is Expressed by Activated Mouse NK Cells and Inhibits NK Cell IFN-γ Production in Response to Mature Dendritic Cells

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract NK cells express an array of activating and inhibitory receptors that determine NK cell responses upon triggering by cognate ligands. Although activating NK cell receptors recognize mainly ligands expressed by stressed, virus-infected, or transformed cells, most inhibitory receptors engage MHC class I, preventing NK cell activation in response to healthy cells. In this study, we provide insight into the regulation and function of additional receptors involved in mouse NK cell responses: CTLA-4 and CD28. CTLA-4 and CD28 engage the same ligands, B7-1 and B7-2, which are primarily expressed by APCs, such as dendritic cells. Our data demonstrate that activation of mouse NK cells with IL-2 induces the expression of CTLA-4 and upregulates CD28. CTLA-4 expression in IL-2–expanded NK cells was further up- or downregulated by IL-12 or TGF-β, respectively. Using gene-deficient NK cells, we show that CD28 induces, and CTLA-4 inhibits, IFN-γ release by NK cells upon engagement by the recombinant ligand, B7-1, or upon coculture with mature dendritic cells. Notably, we show that mouse NK cells infiltrating solid tumors express CD28 and CTLA-4 and respond to stimulation with recombinant B7-1, suggesting that the NK cell responses mediated by the CD28/CTLA-4:B7-1/B7-2 system could be of importance during malignant disease. Accordingly, our study might have implications for immunotherapy of cancer based on blocking anti–CTLA-4 mAbs.