Published in

Elsevier, Waste Management, 11(34), p. 2007-2013

DOI: 10.1016/j.wasman.2014.07.001

Links

Tools

Export citation

Search in Google Scholar

Modeling organic micro pollutant degradation kinetics during sewage sludge composting

Journal article published in 2014 by Yumna Sadef, Tjalfe Gorm Poulsen, Kai Bester ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Degradation of 13 different organic micro-pollutants in sewage sludge during aerobic composting at 5 different temperatures over a 52day period was investigated. Adequacy of two kinetic models: a single first order, and a dual first order expression (using an early (first 7days) and a late-time (last 45days) degradation coefficient), for describing micro-pollutant degradation, and kinetic constant dependency on composting temperature were evaluated. The results showed that both models provide relatively good descriptions of the degradation process, with the dual first order model being most accurate. The single first order degradation coefficient was 0.025d(-1) on average across all compounds and temperatures. At early times, degradation was about three times faster than at later times. Average values of the early and late time degradation coefficients for the dual first order model were 0.066d(-1) and 0.022d(-1), respectively. On average 30% of the initial micro-pollutant mass present in the compost was degraded rapidly during the early stages of the composting process. Single first order and late time dual first order kinetic constants were strongly dependent on composting temperature with maximum values at temperatures of 35-65°C. In contrast the early time degradation coefficients were relatively independent of composting temperature.