Dissemin is shutting down on January 1st, 2025

Published in

American Geophysical Union, Journal of Geophysical Research, E12(108), 2003

DOI: 10.1029/2002je002029

Links

Tools

Export citation

Search in Google Scholar

Magnetic Properties Experiments on the Mars Exploration Rover mission: MAGNETIC PROPERTIES EXPERIMENTS ON MER

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

[1] The Mars Exploration Rovers each carry a set of Magnetic Properties Experiments designed with the following objectives in mind: (1) to identify the magnetic mineral(s) in the dust, soil and rocks on Mars, (2) to establish if the magnetic material is present in the form of nanosized (d < 10 nm) superparamagnetic crystallites embedded in the micrometer sized airborne dust particles, and (3) to establish if the magnets are culling a subset of strongly magnetic particles or if essentially all particles of the airborne dust are sufficiently magnetic to be attracted by the magnets. To accomplish these goals, the Mars Exploration Rovers each carry a set of permanent magnets of several different strengths and sizes. Each magnet has its own specific objective. The dust collected from the atmosphere by the Capture magnet and the Filter magnet (placed on the front of each rover) will be studied by the Mössbauer spectrometer and the Alpha Particle X-ray Spectrometer, both of which are instruments located on the rover's Instrument Deployment Device. The captured dust particles will also be imaged by the Pancam and Microscopic Imager. The Sweep magnet will be imaged by Pancam and is placed near the Pancam calibration target. The four magnets in the Rock Abrasion Tool (RAT) are designed to capture magnetic particles originating from the grinding of Martian surface rocks. The magnetic particles captured by the RAT magnets will be imaged by Pancam.