Dissemin is shutting down on January 1st, 2025

Published in

American Physical Society, Physical review E: Statistical, nonlinear, and soft matter physics, 4(65)

DOI: 10.1103/physreve.65.041107

Links

Tools

Export citation

Search in Google Scholar

Effect of nonstationarities on detrended fluctuation analysis

Journal article published in 2001 by Zhi Chen, Plamen C.-H. Ivanov, Kun Hu, H. Eugene Stanley ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Detrended fluctuation analysis (DFA) is a scaling analysis method used to quantify long-range power-law correlations in signals. Many physical and biological signals are "noisy," heterogeneous, and exhibit different types of nonstationarities, which can affect the correlation properties of these signals. We systematically study the effects of three types of nonstationarities often encountered in real data. Specifically, we consider nonstationary sequences formed in three ways: (i) stitching together segments of data obtained from discontinuous experimental recordings, or removing some noisy and unreliable parts from continuous recordings and stitching together the remaining parts-a "cutting" procedure commonly used in preparing data prior to signal analysis; (ii) adding to a signal with known correlations a tunable concentration of random outliers or spikes with different amplitudes; and (iii) generating a signal comprised of segments with different properties-e.g., different standard deviations or different correlation exponents. We compare the difference between the scaling results obtained for stationary correlated signals and correlated signals with these three types of nonstationarities. We find that introducing nonstationarities to stationary correlated signals leads to the appearance of crossovers in the scaling behavior and we study how the characteristics of these crossovers depend on (a) the fraction and size of the parts cut out from the signal, (b) the concentration of spikes and their amplitudes (c) the proportion between segments with different standard deviations or different correlations and (d) the correlation properties of the stationary signal. We show how to develop strategies for preprocessing "raw" data prior to analysis, which will minimize the effects of nonstationarities on the scaling properties of the data, and how to interpret the results of DFA for complex signals with different local characteristics.