Dissemin is shutting down on January 1st, 2025

Published in

Bentham Science Publishers, Current Medicinal Chemistry, 27(17), p. 3045-3057

DOI: 10.2174/092986710791959774

Links

Tools

Export citation

Search in Google Scholar

Biological Rationales and Clinical Applications of Temperature Controlled Hyperthermia - Implications for Multimodal Cancer Treatments

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Hyperthermia (HT)--heating the tumor in the range of 40.0- 44.0 °C--combined with radiation (RT) and/or chemotherapy (CT) is a well proven treatment for malignant tumors. The improvement of the techniques for monitoring and adapting of the desired temperatures even in deep seated tumors has led to a renaissance of, now quality-controlled, HT in multimodal tumor therapy approaches. Randomized clinical trials have shown improved disease-free survival and local tumor control without an increase in toxicity for the combined treatment. In this review, we will focus on biological rationales of HT comprising direct cytotoxicity, systemic effects, chemosensitization, radiosensitization, and immune modulation. The latter is a prerequisite for the control of recurrent tumors and micrometastases. Immunogenic tumor cell death forms induced by HT will be introduced. Modulations of the cytotoxic properties of chemotherapeutic agents by HT as well as synergistic effects of HT with RT will be presented in the context of the main aims of anti-tumor therapy. Furthermore, modern techniques for thermal mapping like magnet resonance imaging will be outlined. The effectiveness of HT will be demonstrated by reviewing recent clinical trials applying HT in addition to CT and/or RT. We conclude that hyperthermia is a very potent radio- as well as chemosensitizer, which fosters the induction of immunogenic dead tumor cells leading to local and in special cases also to systemic tumor control.