The uptake of As, Cd, Pb, and Zn and potential phytoremediation efficiency of five high biomass producing crops, white sweetclover (Melilotus alba L.), red clover (Trifolium pratense L.), curled mallow (Malva verticillata L.), saf- flower (Carthamus tinctorius L.) and hemp (Cannabis sativa L.) commonly used as grazing and/or energy crops was evaluated in both pot and field experiments at soils with different level of element contamination. In pot expe- riment the highest phytoremediation efficiency was demonstrated by C. tinctorius where 4.8% of Cd and 1.1% of Zn were removed from the moderately contaminated soil in one vegetation period when repeated harvest of aboveground biomass was performed. The removal of As and Pb was negligible for all the investigated plant species. At the highest element content in soil inhibition of plant growth due to the element phytotoxicity to plants was reported in most of cases. In the precise field experiment lower phytoremediation efficiency (biennial phytoremediation factors did not exceed 0.2% for Pb and Zn and 0.3% for Cd for C. tinctorius) was determined but yield suppress was not observed. Thus, free space for manipulation with element mobility in soil to increase element uptake by plants remains for further research.