Published in

American Chemical Society, ACS Applied Materials and Interfaces, 41(7), p. 23144-23152, 2015

DOI: 10.1021/acsami.5b06951

Links

Tools

Export citation

Search in Google Scholar

Adsorption of Lead Ions from Aqueous Phase on Mesoporous Silica with P-Containing Pendant Groups

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Mesoporous silica materials with hydroxyphosphatoethyl pendant groups (POH-MS) were obtained by a two-step process: (1) block copolymer Pluronic P123-templated synthesis of mesoporous silica with diethylphosphatoethyl groups (DP-MS) by co-condensation of diethylphosphatoethyl triethoxysilane (DPTS) and tetraethylorthosilicate (TEOS) under acidic conditions, and (2) conversion of diethylphosphatoethyl into hydroxyphosphatoethyl groups upon suitable treatment with concentrated hydrochloric acid. The DP-MS samples obtained by using up to 20% of DPTS featured hexagonally ordered mesopores, narrow pore size distribution and high specific surface area. Conversion of DP-MS to mesoporous silica with hydroxyphosphatoethyl groups (POH-MS) resulted in the enlargement of the specific surface area, total porosity, and microporosity. High affinity of hydroxyphosphatoethyl groups toward lead ions (Pb2+) makes the POH-MS materials attractive sorbents for lead ions, which is reflected by high lead uptake reaching 272 mg of Pb2+ per gram of POH-MS. This study shows that the simple and effective co-condensation strategy assures high loading of P-containing groups showing high affinity toward lead ions, which is of great importance for removal of highly toxic lead ions from contaminated water.