Published in

Springer, Photochemical & Photobiological Sciences, 9(12), p. 1726-1737, 2013

DOI: 10.1039/c3pp50041a

Links

Tools

Export citation

Search in Google Scholar

Small doses from artificial UV sources elucidate the photo-production of vitamin D

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

To clarify the relation between UV exposure and vitamin D status, 201 volunteers wore personal electronic UV dosimeters during daylight hours, to record their UV exposure over a 10 week period when ambient UV levels were significantly less than the summer maxima. Blood samples to determine serum 25-hydroxyvitamin D3 [25(OH)D3] levels were taken at the end of week 4 and week 8. Participants were then given a single full-body exposure of approximately 2 SED from one of four artificial UV sources with different spectral outputs and a further blood sample taken at study completion, nominally week 10. The artificial UV exposure reversed the mean seasonal decline in 25(OH)D3. Increases in 25(OH)D3 from week 8 to week 10 were related to total UV exposure, including the ambient sun exposures. These exposures were weighted by the erythemal action spectrum and separately for three different action spectra for pre-vitamin D production. For the erythema weighting function, 25(OH)D3 increased 1.78 ± 0.25 nmol per litre per SED, a value consistent with other studies. Any differences due to age, BMI, gender, and skin reflectance were not statistically significant. Ethnicity differences were the only significant factor, with Asians producing the least vitamin D, and Maori the most. There was no statistically significant improvement in consistency between sources for any of the three pre-vitamin weightings compared with that for erythema. Further work is needed to verify which vitamin D action spectrum is most appropriate. Nevertheless, these small doses of UV from artificial sources were helpful in quantifying the relationship between UV exposure and vitamin D status among the New Zealand population.