Published in

American Chemical Society, Journal of the American Chemical Society, 32(131), p. 11353-11360, 2009

DOI: 10.1021/ja9021717

Links

Tools

Export citation

Search in Google Scholar

Live Cell Cytotoxicity Studies: Documentation of the Interactions of Antitumor Active Dirhodium Compounds with Nuclear DNA

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The promising antitumor activity of dirhodium complexes has been known for over 30 years. There remains, however, a general lack of understanding of their activity in cellulo. In this study, we report the DNA interactions and activity in living cells of six monosubstituted dirhodium(II,II) complexes of general formula [Rh(2)(mu-O(2)CCH(3))(2)(eta(1)-O(2)CCH(3))(L)(CH(3)OH)](+), where L = bpy (2,2'-bipyridine) (1), phen (1,10-phenanthroline) (2), dpq (dipyrido[3,2-f:2',3'-h]quinoxaline) (3), dppz (dipyrido[3,2-a:2',3'-c]phenazine) (4), dppn (benzo[i]dipyrido[3,2-a:2',3'-c]phenazine) (5), and dap (4,7-dihydrodibenzo[de,gh][1,10]phenanthroline) (6). DNA interactions were investigated by UV/visible spectroscopy, relative viscosity measurements, and electrophoretic mobility shift assay. These measurements indicate that compound 5 exhibits the strongest interaction with DNA. Compound 5 also causes the most damage to DNA after cellular internalization, as evaluated by the alkaline comet assay. Compound 5, however, is not the most effective at inhibiting cell viability of the human cancer cells HeLa and COLO-316. The greater hydrophobicity of 5 as compared to that of 4, which is the most effective compound in the series, hinders its ability to reach its cellular target(s). Data from modulation studies of glutathione using N-acetylcysteine and L-buthionine-sulfoximine indicate that changes in glutathione levels do not affect the activity of these particular dirhodium complexes. These results suggest that glutathione is not the only agent involved in the deactivation of these dirhodium complexes.