Oxford University Press, Biology of Reproduction, 4(70), p. 1018-1023, 2004
DOI: 10.1095/biolreprod.103.022640
Full text: Unavailable
Dendritic cells (DCs) are known to play a major role in the induction, maintenance, and regulation of immune responses. Recently, DCs have been described to be present at the feto-maternal interface in human decidua. However, only limited information is available about DC presence, phenotype, and--more importantly--function throughout gestation. Thus, we analyzed local (uterine) and systemic (blood) DCs in a murine model. DBA/2J mated CBA/J females with vaginal plugs were separated and killed on Gestation Days (GDs) 1.5, 3.5, 5.5, 6.5, 7.5, 8.5, 10.5, 13.5, 15.5, or 17.5. Frequency of uterine and blood CD11c+ DC, phenotype (coexpression of CD8alpha and major histocompatibility complex class II [MHC II] antigens), and presence of intracellular cytokines (interleukins 12 and 10) were determined by flow cytometry. The morphology of DC in the pregnant uterus was evaluated by immunohistochemistry. In uterus, the relative number of CD11c+ cells increased from GD 5.5, reaching a plateau on GD 9.5 until GD 17.5, while a transient peak of systemic CD11c+ cells was found on GD 8.5 and 10.5. The vast majority of uterine DCs were CD8alpha- and thus, belonged to the myeloid lineage. Interestingly, a significant peak of lymphoid DC was present on GD 1.5 and 5.5. Further, significantly more intracellular interleukin 10 than interleukin 12 was present in CD11c+ cells. Interestingly, mature DCs (MHC II+) were diminished from GD 5.5 to 8.5. Characterization of CD11c+ cell kinetics in uterus and blood reveals variation of phenotype during pregnancy, pointing toward an eminent immunoregulatory role of DCs throughout gestation at the feto-maternal interface.