Dissemin is shutting down on January 1st, 2025

Published in

Bentham Open, Open Chemical Engineering Journal, 1(9), p. 1-6, 2015

DOI: 10.2174/1874123101509010001

Links

Tools

Export citation

Search in Google Scholar

Thermodynamic Modeling of High-pressure Equilibrium Data for the Systems L-lactic Acid + (Propane + Ethanol) and L-lactic Acid + (Carbon Dioxide + Ethanol)

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

This short communication reports the thermodynamic modeling of high-pressure equilibrium data (cloud points) for the systems L-lactic acid + (propane + ethanol) and L-lactic acid + (carbon dioxide + ethanol) from 323.15 K to 353.15 K and at pressures up to 25 MPa. The experimental data were modeled using the Peng-Robinson equation of state with the classical van der Waals quadratic mixing rule (PR-vdW2) and with the Wong-Sandler mixing rule (PR-WS). It is shown that the PR-vdW2 and PR-WS models were both able to satisfactorily represent the phase behavior of the system L-lactic acid + (carbon dioxide + ethanol). However, for the system L-lactic acid + (propane + ethanol), the PR-vdW2 model was not able to appropriately describe its phase behavior.