American Institute of Physics, The Journal of Chemical Physics, 1(103), p. 113
DOI: 10.1063/1.469649
Full text: Download
The cavity ringdown technique has been employed for the first spectroscopic characterization of the AgSi molecule, which is generated in a pulsed laser vaporization plasma reactor. A total of 20 rovibronic bands between 365 and 385 nm have been measured and analyzed to yield molecular properties for the X, B, and C 2Sigma states of AgSi. A time-of-flight mass spectrometer simultaneously monitors species produced in the molecular beam and has provided the first direct evidence for the existence of polyatomic silver silicides. Comparison of the AgSi data to our recent results for the CuSi diatom reveals very similar chemical bonding in the two coinage metal silicides, apparently dominated by covalent interactions.