Springer Nature [academic journals on nature.com], Heredity, 1(94), p. 94-100, 2004
Full text: Download
Mating appears to inflict a cost to Drosophila females, resulting in a reduction of their lifespan shortly after mating. Males from different chromosome extracted lines differ significantly in their detrimental effects on postmating female survival, and seminal fluid proteins produced in the male accessory glands are at least partially responsible for the effect. This suggests that there is a genetic basis underlying the male inflicted effect on female's postmating mortality. However, the genes responsible for this effect remain elusive. Using males from introgression lines between D. simulans and D. sechellia genomes and a quantitative trait locus (QTL) mapping approach, we identified chromosomal regions that affect postmating mortality of females. We found a second chromosome QTL with an effect on average female lifespan after mating and a third chromosome QTL with an effect on postmating female mortality rate. Under the general observation of a faster divergence of sex-related genes among closely related species, it is predicted that genes for reproductive traits other than hybrid sterility will show evidence of epistatic effects when brought into a heterospecific background. We detected a significant epistatic genetic effect on postmating female mortality rate that supports this prediction.