Published in

Elsevier, International Journal of Hydrogen Energy, 15(35), p. 7925-7929

DOI: 10.1016/j.ijhydene.2010.05.084

Links

Tools

Export citation

Search in Google Scholar

A high performance BaZr0.1Ce0.7Y0.2O3-δ-based solid oxide fuel cell with a cobalt-free Ba0.5Sr0.5FeO3-δ–Ce0.8Sm0.2O2-δ composite cathode

Journal article published in 2010 by Wenping Sun ORCID, Zhen Shi, Shumin Fang, Litao Yan, Zhiwen Zhu, Wei Liu
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A cobalt-free Ba0.5Sr0.5FeO3-δ–Ce0.8Sm0.2O2-δ (BSF–SDC) composite is employed as a cathode for an anode-supported proton-conducting solid oxide fuel cells (H-SOFCs) using BaZr0.1Ce0.7Y0.2O3-δ (BZCY) as the electrolyte. The chemical compatibility between BSF and SDC is evaluated. The XRD results show that BSF is chemically compatible with SDC after co-fired at 1000 °C for 6 h. A single cell with a 20-μm-thick BZCY electrolyte membrane exhibits excellent power densities as high as 792 and 696 mW cm−2 at 750 and 700 °C, respectively. To the best of our knowledge, this is the highest performance reported in literature up to now for BZCY-based single cells with cobalt-free cathode materials. Extremely low polarization resistances of 0.030 and 0.044 Ωcm2 are achieved at 750 and 700 °C respectively. The excellent performance implies that the cobalt-free BSF–SDC composite is a promising alternative cathode for H-SOFCs. Resistances of the tested cell are investigated under open circuit conditions at different operating temperatures by impedance spectroscopy.