Published in

Association for Computing Machinery (ACM), ACM Transactions on Graphics, 3(21), p. 372-379, 2002

DOI: 10.1145/566654.566591

Association for Computing Machinery (ACM), ACM Transactions on Graphics

DOI: 10.1145/566570.566591

Links

Tools

Export citation

Search in Google Scholar

Progressive Lossless Compression of Arbitrary Simplicial Complexes

Journal article published in 2002 by Pierre-Marie Gandoin, Olivier Devillers ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Efficient algorithms for compressing geometric data have been widely developed in the recent years, but they are mainly designed for closed polyhedral surfaces which are manifold or "nearly manifold". We propose here a progressive geometry compression scheme which can handle manifold models as well as "triangle soups" and 3D tetrahedral meshes. The method is lossless when the decompression is complete which is extremely important in some domains such as medical or finite element.While most existing methods enumerate the vertices of the mesh in an order depending on the connectivity, we use a kd-tree technique [Devillers and Gandoin 2000] which does not depend on the connectivity. Then we compute a compatible sequence of meshes which can be encoded using edge expansion [Hoppe et al. 1993] and vertex split [Popović and Hoppe 1997].The main contributions of this paper are: the idea of using the kd-tree encoding of the geometry to drive the construction of a sequence of meshes, an improved coding of the edge expansion and vertex split since the vertices to split are implicitly defined, a prediction scheme which reduces the code for simplices incident to the split vertex, and a new generalization of the edge expansion operation to tetrahedral meshes.