Published in

American Association of Immunologists, The Journal of Immunology, 4(174), p. 1971-1979, 2005

DOI: 10.4049/jimmunol.174.4.1971

Links

Tools

Export citation

Search in Google Scholar

P2X7 Receptor-Dependent and -Independent T Cell Death Is Induced by Nicotinamide Adenine Dinucleotide

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Adding NAD to murine T lymphocytes inhibits their functions and induces annexin V binding. This report shows that NAD induces cell death in a subset of T cells within seconds whereas others do not die until many hours later. Low NAD concentrations (<10 μM) suffice to trigger rapid cell death, which is associated with annexin V binding and membrane pore formation, is not blocked by the caspase inhibitor Z-VADfmk, and requires functional P2X7 receptors. The slower induction of death requires higher NAD concentrations (>100 μM), is blocked by caspase inhibitor Z-VADfmk, is associated with DNA fragmentation, and does not require P2X7 receptors. T cells degrade NAD to ADP-ribose (ADPR), and adding ADPR to T cells leads to slow but not rapid cell death. NAD but not ADPR provides the substrate for ADP-ribosyltransferase (ART-2)-mediated attachment of ADP-ribosyl groups to cell surface proteins; expression of ART-2 is required for NAD to trigger rapid but not slow cell death. These results support the hypothesis that cell surface ART-2 uses NAD but not ADPR to attach ADP-ribosyl groups to the cell surface, and that these groups act as ligands for P2X7 receptors that then induce rapid cell death. Adding either NAD or ADPR also triggers a different set of mechanisms, not requiring ART-2 or P2X7 receptors that more slowly induce cell death.