Dissemin is shutting down on January 1st, 2025

Published in

The University of Chicago Press, Freshwater Science, 1(32), p. 217-229, 2013

DOI: 10.1899/11-117.1

Links

Tools

Export citation

Search in Google Scholar

Influence of stream–floodplain biogeochemical linkages on aquatic foodweb structure along a gradient of stream size in a tropical catchment

Journal article published in 2013 by Jason B. Fellman, Neil E. Pettit, Jesse Kalic, Pauline F. Grierson ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

We measured nutrients and dissolved organic matter (DOM) in surface water and floodplain sediments to evaluate biogeochemical linkages between streams and floodplains in 3 streams of increasing size in a tropical catchment in northwestern Australia. We hypothesized that stream–floodplain biogeochemical connectivity, measured as similar DOM concentrations and spectroscopic properties of streamwater and floodplain sediment leachate, would decrease with increasing stream size. We expected decreasing connectivity to shift support of aquatic foodweb structure from mainly allochthonous C in small streams to algal C in larger streams. Streamwater and sediment leachate concentrations of NH4-N, NO3-N, soluble reactive P, and DOM varied several-fold across the 3 sites but showed no strong pattern in stream–floodplain connectivity with increasing stream size. Fluorescence index, specific ultraviolet absorbance, and δ13C-dissolved organic C (DOC) for stream water and sediment leachate were most similar to each other at the mid-size Adcock River, indicating tight river–floodplain biogeochemical connectivity via input of allochthonous DOM and NH4-N to stream water. δ13C and δ15N signatures for key producers and consumers for all 3 streams showed that invertebrate consumers probably were supported by a range of in-stream (e.g., benthic and filamentous algae) and floodplain (allochthonous leaf litter) sources, whereas fish strongly reflected δ13C-enriched sources (e.g., benthic algae). Allochthonous C was probably only a minor energy source for metazoa, but we propose that river–floodplain biogeochemical linkages may be important for other aspects of ecosystem productivity, such as input of inorganic nutrients to support in-stream primary production. Terrestrial–aquatic biogeochemical linkages may be critical but poorly quantified components of river–floodplain ecosystems.