Published in

Springer Verlag, Journal of Nanoparticle Research, 11(13), p. 6193-6200

DOI: 10.1007/s11051-011-0310-6

Links

Tools

Export citation

Search in Google Scholar

Effects of temperature and humidity on electrospun conductive nanofibers based on polyaniline blends

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

This study focuses and discusses the effects of temperature and humidity on electrospun conductive nanofibers, made with different polymer blends, deposited directly on interdigitated electrodes. The selected conductive polymers were based on blends of polyaniline emeraldine salt form and three different carrier hosting polymers: polyvinilpyrrolidone, polystyrene, and polyethylene oxide respectively. The obtained fibrous layers were investigated by the electrical measurements and morphological analysis (scanning electron microscopy). The study was made on the correlation between the electrical changes and morphological discrepancies due to temperature treatment. Moreover, this article reports the effects of relative humidity variations on electrical parameters. Since polyaniline is a well-known sensing material for different gases and volatile organic compounds, this study could be considered a supportive study for employing of the mentioned polymer blends as chemical interactive materials in gas sensor applications.