Published in

Oxford University Press, FEMS Microbiology Letters, 1(255), p. 33-42, 2006

DOI: 10.1111/j.1574-6968.2005.00056.x

Links

Tools

Export citation

Search in Google Scholar

Effects of sterol biosynthesis inhibitors on endosymbiont-bearing trypanosomatids

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Some protozoa of the Trypanosomatidae family have a close relationship with an endosymbiotic bacterium. As the prokaryote envelope has a controversial origin, a sterol 24-methyltransferase inhibitor (20-piperidin-2-yl-5alpha-pregnan-3beta,20-diol; 22,26-azasterol) was used as a tool to investigate lipid biosynthetic pathways in Crithidia deanei, an endosymbiont-bearing trypanosomatid. Apart from antiproliferative effects, this drug induced ultrastructural alterations, consisting of myelin-like figures in the cytoplasm and endosymbiont envelope vesiculation. Concurrently, a dramatic reduction of 24-alkyl sterols was observed after 22,26-azasterol treatment, both in whole cell homogenates, as well as in isolated mitochondria. These effects were associated with changes of phospholipid composition, in particular a reduction of the phosphatidylcholine content and a concomitant increase in phosphatidylethanolamine levels. Lipid analyses of purified endosymbionts indicated a complete absence of sterols, and their phospholipid composition was different from that of mitochondria or whole protozoa, being similar to eubacteria closely associated with eukaryotes.