Published in

Royal Society of Chemistry, RSC Advances, 51(5), p. 40892-40898, 2015

DOI: 10.1039/c5ra06352c

Links

Tools

Export citation

Search in Google Scholar

Shape-controlled synthesis of Pd nanoparticles for effective photocatalytic hydrogen production

Journal article published in 2015 by Muhua Luo, Weifeng Yao, Cunping Huang, Qiang Wu, Qunjie Xu
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Pd nanocubes and nanooctahedrons were synthesized via shape-controlled technology and loaded onto a commercial CdS semiconductor photocatalyst for visible light photocatalytic hydrogen production via photooxidation of an aqueous ammonium sulfite solution. High resolution TEM analysis indicates that Pd nanooctahedrons (Pd NOTs) are enclosed by eight {111} facets, while synthesized Pd nanocubes (Pd NCs) are enclosed by six {100} crystal planes. The hydrogen evolution rate of Pd NC loaded CdS photocatalyst (Pd-NCs/CdS) is 1.38 times higher than that of Pd NOT loaded Pd-NOTs/CdS photocatalyst. The electrochemical characterization reveals that the higher photocatalytic activity of Pd-NCs/CdS is attributed to the higher electrochemical active surface area (ECSA) and the electrochemical activities of the Pd {100} crystal planes of Pd NCs.