Published in

Institute of Electrical and Electronics Engineers, IEEE Transactions on Biomedical Engineering, 6(55), p. 1658-1665, 2008

DOI: 10.1109/tbme.2008.919872

Links

Tools

Export citation

Search in Google Scholar

Spectral and Nonlinear Analyses of MEG Background Activity in Patients With Alzheimer's Disease

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The aim of the present study is to analyze the magnetoencephalogram (MEG) background activity from patients with Alzheimer's disease (AD) and elderly control subjects. MEG recordings from 20 AD patients and 21 controls were analyzed by means of two spectral [median frequency (MF) and spectral entropy (SpecEn)] and two nonlinear parameters [approximate entropy (ApEn) and Lempel-Ziv complexity (LZC)]. In the AD diagnosis, the highest accuracy of 75.6% (80% sensitivity, 71.4% specificity) was obtained with the MF according to a linear discriminant analysis (LDA) with a leave-one-out cross-validation procedure. Moreover, we wanted to assess whether these spectral and nonlinear analyses could provide complementary information to improve the AD diagnosis. After a forward stepwise LDA with a leave-one-out cross-validation procedure, one spectral (MF) and one nonlinear parameter (ApEn) were automatically selected. In this model, an accuracy of 80.5% (80.0% sensitivity, 81.0% specificity) was achieved. We conclude that spectral and nonlinear analyses from spontaneous MEG activity could be complementary methods to help in AD detection.