Published in

International Union of Crystallography, Acta Crystallographica Section D: Biological Crystallography, 10(69), p. 2124-2135, 2013

DOI: 10.1107/s0907444913020568

Links

Tools

Export citation

Search in Google Scholar

Structural analysis and insights into the glycon specificity of the rice GH1 Os7BGlu26 β- D -mannosidase

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Rice Os7BGlu26 is a GH1 family glycoside hydrolase with a threefold higherkcat/Kmvalue for 4-nitrophenyl β-D-mannoside (4NPMan) compared with 4-nitrophenyl β-D-glucoside (4NPGlc). To investigate its selectivity for β-D-mannoside and β-D-glucoside substrates, the structures of apo Os7BGlu26 at a resolution of 2.20 Å and of Os7BGlu26 with mannose at a resolution of 2.45 Å were elucidated from isomorphous crystals in space groupP212121. The (β/α)8-barrel structure is similar to other GH1 family structures, but with a narrower active-site cleft. The Os7BGlu26 structure with D-mannose corresponds to a product complex, with β-D-mannose in the1S5skew-boat conformation. Docking of the1S3,1S5,2SOand3S1pyranose-ring conformations of 4NPMan and 4NPGlc substrates into the active site of Os7BGlu26 indicated that the lowest energies were in the1S5and1S3skew-boat conformations. Comparison of these docked conformers with other rice GH1 structures revealed differences in the residues interacting with the catalytic acid/base between enzymes with and without β-D-mannosidase activity. The mutation of Tyr134 to Trp in Os7BGlu26 resulted in similarkcat/Kmvalues for 4NPMan and 4NPGlc, while mutation of Tyr134 to Phe resulted in a 37-fold higherkcat/Kmfor 4NPMan than 4NPGlc. Mutation of Cys182 to Thr decreased both the activity and the selectivity for β-D-mannoside. It was concluded that interactions with the catalytic acid/base play a significant role in glycon selection.