Published in

Taylor and Francis Group, Gut Microbes, 5(5), p. 618-627, 2014

DOI: 10.4161/19490976.2014.969642

Links

Tools

Export citation

Search in Google Scholar

Zinc deficiency alters host response and pathogen virulence in a mouse model of enteroaggregativeescherichia coli-induced diarrhea

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Enteroaggregative Escherichia coli (EAEC) is increasingly recognized as a major cause of diarrheal disease globally. In the current study, we investigated the impact of zinc deficiency on the host and pathogenesis of EAEC. Several outcomes of EAEC infection were investigated including weight loss, EAEC shedding and tissue burden, leukocyte recruitment, intestinal cytokine expression, and virulence expression of the pathogen in vivo. Mice fed a protein source defined zinc deficient diet (dZD) had an 80% reduction of serum zinc and a 50% reduction of zinc in luminal contents of the bowel compared to mice fed a protein source defined control diet (dC). When challenged with EAEC, dZD mice had significantly greater weight loss, stool shedding, mucus production, and, most notably, diarrhea compared to dC mice. Zinc deficient mice had reduced infiltration of leukocytes into the ileum in response to infection suggesting an impaired immune response. Interestingly, expression of several EAEC virulence factors were increased in luminal contents of dZD mice. These data show a dual effect of dietary zinc in benefitting the host while impairing virulence of the pathogen. The study demonstrates the critical importance of zinc and may help elucidate the benefits of zinc supplementation in cases of childhood diarrhea and malnutrition.