Published in

Cell Press, Trends in Microbiology, 2(21), p. 100-109

DOI: 10.1016/j.tim.2012.09.002

Links

Tools

Export citation

Search in Google Scholar

Mycobacterium tuberculosis-secreted phosphatases: From pathogenesis to targets for TB drug development

Journal article published in 2012 by Dennis Wong, Joseph D. Chao, Yossef Av-Gay ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Mycobacterium tuberculosis (Mtb) infects human alveolar macrophages and relies on the inhibition of phagosome acidification and maturation. This is, in part, dependent on the disruption of host signaling networks within the macrophage. In recent years, Mtb-secreted protein- and lipid-phosphatases protein-tyrosine phosphatase A (PtpA), PtpB, and secreted acid phosphatase M (SapM) have been shown to contribute to Mtb pathogenicity. Here, we review the current knowledge on PtpA, PtpB, and SapM focusing on their ability to interfere with host functions. We further explore how these phosphatase-dependent host-pathogen interactions can be targeted for novel tuberculosis (TB) drug discovery and examine the ongoing development of inhibitors against these phosphatases.