Published in

IOP Publishing, Superconductor Science and Technology, 2(27), p. 022002

DOI: 10.1088/0953-2048/27/2/022002

Links

Tools

Export citation

Search in Google Scholar

Chemical solution derived planarization layers for highly aligned IBAD-MgO templates

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The main goal of this research is to develop a chemical solution derived planarization layer to fabricate highly aligned IBAD-MgO templates for the development of high temperature superconductor (HTS) based coated conductors. The standard IBAD-MgO template needs an additional electrochemical polishing step of the mechanically polished 50 μm-thick Hastelloy C-276 substrates to ensure a flat and smooth surface for subsequent growth of multi-layer buffer architectures, which include: sputtered 80 nm Al2O3; sputtered 7 nm Y2O3; IBAD 10 nm MgO; sputtered 30 nm homo-epi MgO; and sputtered 30 nm LaMnO3 (LMO) layers. We have successfully developed a solution planarization layer that removes the electrochemical polishing step and also acts as a barrier layer. Crack-free, smooth Al2O3 layers were prepared on mechanically polished Hastelloy substrates using a chemical solution process. The average surface roughness value, R a, for a starting substrate was 9–10 nm. After eight coatings of Al2O3 layer, the R a was reduced to 2 nm. Highly aligned IBAD-MgO layers with out-of-plane and in-plane textures comparable to the standard IBAD-MgO layers were successfully deposited on top of the solution planarization Al2O3 layers with an Y2O3 nucleation layer using a reel-to-reel ion-beam sputtering system. Both homo-epi MgO and LMO layers were subsequently deposited on the IBAD-MgO layers using RF sputtering to complete the buffer stack required for the growth of HTS films. YBa2Cu3O7−δ (YBCO) films with a thickness of 0.8 μm deposited on these IBAD-MgO templates by pulsed laser deposition showed a high self-field critical current density, J c, of 3.04 MA cm−2 at 77 K and 6.05 MA cm−2 at 65 K. These results demonstrate that a low-cost chemical-solution-based, high-throughput Al2O3 planarization layer can remove the electro-polishing step and replace sputtered Al2O3 layers for the production of high J c YBCO-coated conductors.