Published in

Elsevier, Chemical Physics Letters, 4-6(511), p. 294-298

DOI: 10.1016/j.cplett.2011.06.028

Links

Tools

Export citation

Search in Google Scholar

Theory of zwitterionic molecular-based organic magnets

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We describe a class of organic molecular magnets based on zwitterionic molecules (betaine derivatives) possessing donor, π bridge, and acceptor groups. Using extensive electronic structure calculations we show the electronic ground-state in these systems is magnetic. In addition, we show that the large energy differences computed for the various magnetic states indicate a high Neel temperature. The quantum mechanical nature of the magnetic properties originates from the conjugated π bridge (only p electrons) in cooperation with the molecular donor-acceptor character. The exchange interactions between electron spin are strong, local, and independent on the length of the π bridge.