Published in

Wiley, Particle & Particle Systems Characterization, 4(30), p. 332-337, 2013

DOI: 10.1002/ppsc.201200096

Links

Tools

Export citation

Search in Google Scholar

Fluorinated Eu-Doped SnO2Nanostructures with Simultaneous Phase and Shape Control and Improved Photoluminescence

Journal article published in 2013 by Hongkang Wang ORCID, Yu Wang, Stephen V. Kershaw, Tak Fu Hung, Jun Xu, Andrey L. Rogach
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Fluorinated Eu-doped SnO2 nanostructures with tunable morphology (shuttle-like and ring-like) are prepared by a hydrothermal method, using NaF as the morphology controlling agent. X-ray diffraction, field-emission scanning electron microscopy, high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, and energy dispersive spectroscopy are used to characterize their phase, shape, lattice structure, composition, and element distribution. The data suggest that Eu3+ ions are uniformly embedded into SnO2 nanocrystallites either through substitution of Sn4+ ions or through formation of Eu-F bonds, allowing for high-level Eu3+ doping. Photoluminescence features such as transition intensity ratios and Stark splitting indicate diverse localization of Eu3+ ions in the SnO2 nanoparticles, either in the crystalline lattice or in the grain boundaries. Due to formation of Eu-F and Sn-F bonds, the fluorinated surface of SnO2 nanocrystallites efficiently inhibits the hydroxyl quenching effect, which accounts for their improved photoluminescence intensity.