Dissemin is shutting down on January 1st, 2025

Published in

Wiley, Oikos, 12(116), p. 1995-2006, 2007

DOI: 10.1111/j.2007.0030-1299.15800.x

Links

Tools

Export citation

Search in Google Scholar

Top-down and bottom-up effects on the spatiotemporal dynamics of cereal aphids: Testing scaling theory for local density

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The relationship between density and area depends on local growth rates and the area-dependence of migration rates. These rates vary among taxa due to dispersal behaviour, plot productivity and natural enemy impact. Previous studies in aphids suggest that aphid densities are highest in patches of intermediate sizes, and lower in small and large patches. The suggested mechanism causing these patterns is that the dispersal behaviour in aphids creates a mixture of area- and perimeter-dependent migration rates. In this paper, we used these predictions to examine the additional consequences of nutrient availability and natural enemies on the density-area relationship. The derived predictions were compared to data from a system with three aphid species, a set of aphid parasitoids and generalist natural enemies, and at two levels of plant nutrient availability. We find that predictions from the model based only on dispersal and local growth agree with the temporal dynamics of density-area relationships for aphids in high nutrient patches. In patches with low nutrients, high parasitism rates appeared to cause a negative density-area relationship for aphids, thereby deviating from predictions driven by the aphids' dispersal behavior. Hence, the dispersal model with scale-dependent migration rates can provide a useful tool for understanding insect distribution in patch size gradients, but the relative importance of top-down effects can completely change with plot productivity.