Dissemin is shutting down on January 1st, 2025

Published in

Oxford University Press, Stem Cells, 2(26), p. 455-464, 2007

DOI: 10.1634/stemcells.2007-0628

Links

Tools

Export citation

Search in Google Scholar

Downregulation of multiple stress defense mechanisms during differentiation of human embryonic stem cells

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Evolutionary theory predicts that cellular maintenance, stress defense, and DNA repair mechanisms should be most active in germ line cells, including embryonic stem cells that can differentiate into germ line cells, whereas it would be energetically unfavorable to keep these up in mortal somatic cells. We tested this hypothesis by examining telomere maintenance, oxidative stress generation, and genes involved in antioxidant defense and DNA repair during spontaneous differentiation of two human embryonic stem cell lines. Telomerase activity was quickly downregulated during differentiation, probably due to deacetylation of histones H3 and H4 at the hTERT promoter and deacetylation of histone H3 at hTR promoter. Telomere length decreased accordingly. Mitochondrial superoxide production and cellular levels of reactive oxygen species increased as result of increased mitochondrial biogenesis. The expression of major antioxidant genes was downregulated despite this increased oxidative stress. DNA damage levels increased during differentiation, whereas expression of genes involved in different types of DNA repair decreased. These results confirm earlier data obtained during mouse embryonic stem cell differentiation and are in accordance with evolutionary predictions. Disclosure of potential conflicts of interest is found at the end of this article.