Published in

Canadian Science Publishing, Canadian Journal of Chemistry, 2(89), p. 98-103, 2011

DOI: 10.1139/v10-093

Links

Tools

Export citation

Search in Google Scholar

Luminescence studies of copper(I)-containing [2]pseudorotaxanes

Journal article published in 2011 by Breeze N. Briggs, Fabien Durola ORCID, David R. McMillin, Jean-Pierre Sauvage
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

This report describes photoluminescence studies of copper-containing [2]pseudorotaxanes that mimic elements of functioning molecular machines. Excitation with visible light induces a formal oxidation of the metal center and simulates an actuation process. In all four [2]pseudorotaxanes studied, the ring ligand is the same, but the thread ligand is variable, namely 2,9-di(anisol-4-yl)-1,10-phenanthroline (dap), 6,6′-di(anisol-4-yl)-2,2′-bipyridine (o-dabipy), 5,5′-di(anisol-4-yl)-2,2′-bipyridine (m-dabipy), or 8,8′-di(anisol-4-yl)-3,3′-bi-isoquinoline (dabiiq). The absorbance bandshapes suggest that aryl substituents extending from the core ligands engage in stacking interactions and induce a partially flattened structure in the ground state. More severe flattening occurs in the excited state and precludes the observation of emission if inter-ligand steric forces do not limit the distortion. Thus, the [2]pseudorotaxanes containing dap or o-dabipy as the thread ligand exhibit uncorrected emission maxima at around 720 nm in room-temperature dichloromethane, while the less constrained analogues, containing dabiiq or m-dabipy, are not emissive in fluid solution and barely exhibit a signal in rigid media. In dichloromethane, the luminescence quantum yields of the dap- and o-dabipy-containing systems are 6 × 10−4 and 4 × 10−4, and the excited-state lifetimes are 98 ns and 90 ns, respectively.