Published in

IOP Publishing, Nanotechnology, 27(23), p. 275603

DOI: 10.1088/0957-4484/23/27/275603

Links

Tools

Export citation

Search in Google Scholar

Fabrication of a nickel nanowire mesh electrode suspended on polymer substrate

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We report on an efficient strategy for the fabrication of an ultra-long suspended nanowire mesh suitable for nanodevice architectures on a polymer surface. First, nickel nanowires are synthesized directly on a template substrate by magnetron sputtering. Laser interference lithography followed by deep reactive ion etching is used to create the nanograted template substrate constituted of one-dimensional line pattern arrays of 240 nm in periodicity. Ordered alignment of ultra-long nanowires (∼180 nm in diameter) with high fidelity to the template pattern is observed by scanning electron microscopy. The transfer of the pre-defined parallel nanowire array from the template surface to a target polymer substrate for electrical characterization of the system is demonstrated. The electrical behaviour of the nanowire mesh, suspended between two electrodes, was found to be linear, stable, and reproducible. This result suggests that this nanofabrication process will open an efficient way to the design and construction of novel nanodevices.