Published in

Elsevier, Applied Surface Science, (344), p. 57-64, 2015

DOI: 10.1016/j.apsusc.2015.03.073

Links

Tools

Export citation

Search in Google Scholar

Vertically aligned N-doped CNTs growth using Taguchi experimental design

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The Taguchi method with a parameter design L9 orthogonal array was implemented for optimizing the nitrogen incorporation in the structure of vertically aligned N-doped CNTs grown by thermal chemical deposition (TCVD). The maximization of the ID/IG ratio of the Raman spectra was selected as the target value. As a result, the optimal deposition configuration was NH3 = 90 sccm, growth temperature = 825 °C and catalyst pretreatment time of 2 min, the first parameter having the main effect on nitrogen incorporation. A confirmation experiment with these values was performed, ratifying the predicted ID/IG ratio of 1.42. Scanning electron microscopy (SEM) characterization revealed a uniform completely vertically aligned array of multiwalled CNTs which individually exhibit a bamboo-like structure, consisting of periodically curved graphitic layers, as depicted by high resolution transmission electron microscopy (HRTEM). The X-ray photoelectron spectroscopy (XPS) results indicated a 2.00 at.% of N incorporation in the CNTs in pyridine-like and graphite-like, as the predominant species.