Published in

Elsevier, Reproductive BioMedicine Online, 6(27), p. 637-643, 2013

DOI: 10.1016/j.rbmo.2013.09.008

Links

Tools

Export citation

Search in Google Scholar

Lessons from the one-carbon metabolism: Passing it along to the next generation

Journal article published in 2013 by Nisha Padmanabhan, Erica D. Watson ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

During development, a fetus and its placenta must respond to a changing maternal environment to ensure normal growth is achieved and survival is maintained. The mechanisms behind developmental programming involve complex interactions between epigenetic and physiological processes, which are not well understood. Importantly, when programming goes awry, it puts the fetus at risk for disease later in life and may, in some instances, affect subsequent generations via epigenetic processes including DNA methylation. The one-carbon metabolism, which includes the folate, methionine and choline pathways, provides methyl groups necessary for DNA methylation and a normal epigenetic landscape. Accordingly, disruptions in this pathway affect placental development and function leading to altered fetal programming. Remarkably, recent studies have revealed that abnormal folate metabolism causes transgenerational effects probably through epigenetic inheritance. The epigenetic mechanisms behind this phenomenon are not well understood but they have important implications for the influence of the metabolic environment on epigenetic stability and non-genetic inheritance of disease. Importantly, there are increasing concerns that assisted reproductive technologies cause aberrant epigenetic profiles in embryos leading to abnormal fetal programming. How the negative epigenetic consequences of assisted reproduction treatment affect subsequent generations requires further investigation.