Dissemin is shutting down on January 1st, 2025

Published in

American Chemical Society, Journal of Chemical Information and Modeling, 12(50), p. 2129-2140, 2010

DOI: 10.1021/ci100219f

Links

Tools

Export citation

Search in Google Scholar

How Different Are Two Chemical Structures?

Journal article published in 2010 by J. M. C. Marques ORCID, J. L. Llanio Trujillo, P. E. Abreu, F. B. Pereira
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We extend the scope of a recent method for superimposing two molecules ( J. Chem. Phys. 2009, 131, 124126-1-124126-10 ) to include the identification of chiral structures. This methodology is tested by applying it to several organic molecules and water clusters that were subjected to geometry optimization. The accuracy of four simpler, non-superimposing approaches is then analyzed by comparing pairs of structures for argon and water clusters. The structures considered in this work were obtained by a Markovian walk in the coordinate space. First, a random geometry is generated, and then, the iterative application of a mutation operator ensures the creation of increasingly dissimilar structures. The discriminating power of the non-superimposing approaches is tested by comparing the corresponding dissimilarity measures with the root-mean-square distance obtained from the superimposing method. Finally, we showcase the application of those methods to characterize the diversity of solutions in global geometry optimization by evolutionary algorithms.