Published in

MDPI, Materials, 1(8), p. 231-250, 2015

DOI: 10.3390/ma8010231

Links

Tools

Export citation

Search in Google Scholar

TiO2-Mediated Photocatalytic Mineralization of a Non-Ionic Detergent: Comparison and Combination with Other Advanced Oxidation Procedures

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Triton X-100 is one of the most widely-applied man-made non-ionic surfactants. This detergent can hardly be degraded by biological treatment. Hence, a more efficient degradation method is indispensable for the total mineralization of this pollutant. Application of heterogeneous photocatalysis based on a TiO2 suspension is a possible solution. Its efficiency may be improved by the addition of various reagents. We have thoroughly examined the photocatalytic degradation of Triton X-100 under various circumstances. For comparison, the efficiencies of ozonation and treatment with peroxydisulfate were also determined under the same conditions. Besides, the combination of these advanced oxidation procedures (AOPs) were also studied. The mineralization of this surfactant was monitored by following the TOC and pH values, as well as the absorption and emission spectra of the reaction mixture. An ultra-high-performance liquid chromatography (UHPLC) method was developed and optimized for monitoring the degradation of Triton X-100. Intermediates were also detected by GC-MS analysis and followed during the photocatalysis, contributing to the elucidation of the degradation mechanism. This non-ionic surfactant could be efficiently degraded by TiO2-mediated heterogeneous photocatalysis. However, surprisingly, its combination with the AOPs applied in this study did not enhance the rate of the mineralization. Moreover, the presence of persulfate hindered the photocatalytic degradation.