Published in

Medical Imaging 2008: Image Processing

DOI: 10.1117/12.770337

Links

Tools

Export citation

Search in Google Scholar

Nonrigid registration of carotid ultrasound and MR images using a "twisting and bending" model

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Atherosclerosis at the carotid bifurcation resulting in cerebral emboli is a major cause of ischemic stroke. Most strokes associated with carotid atherosclerosis can be prevented by lifestyle/dietary changes and pharmacological treatments if identified early by monitoring carotid plaque changes. Plaque composition information from magnetic resonance (MR) carotid images and dynamic characteristics information from D ultrasound (US) are necessary for developing and validating US imaging tools to identify vulnerable carotid plaques. Combining these images requires nonrigid registration to correct the non-linear miss-alignments caused by relative twisting and bending in the neck due to different head positions during the two image acquisitions sessions. The high degree of freedom and large number of parameters associated with existing nonrigid image registration methods causes several problems including unnatural plaque morphology alteration, computational complexity, and low reliability. Our approach was to model the normal movement of the neck using a "twisting and bending model" with only six parameters for nonrigid registration. We evaluated our registration technique using intra-subject in-vivo 3D US and 3D MR carotid images acquired on the same day. We calculated the Mean Registration Error (MRE) between the segmented vessel surfaces in the target image and the registered image using a distance-based error metric after applying our "twisting bending model" based nonrigid registration algorithm. We achieved an average registration error of 1.33+/-0.41mm using our nonrigid registration technique. Visual inspection of segmented vessel surfaces also showed a substantial improvement of alignment with our non-rigid registration technique.