Published in

Elsevier, Solid State Ionics, (273), p. 8-12, 2015

DOI: 10.1016/j.ssi.2014.11.006

Links

Tools

Export citation

Search in Google Scholar

Oxygen reduction via grain boundary transport in thin film platinum electrodes on yttria stabilized zirconia

Journal article published in 2015 by T. M. Huber ORCID, A. K. Opitz, J. Fleig ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Model-type sputter deposited platinum microelectrodes with different grain sizes were investigated on single crystalline yttria stabilized zirconia (YSZ) by means of impedance spectroscopy. Measurements on single platinum microelectrodes could be continuously performed for > 100 h and from 250 to 800 °C without losing contact. From the temperature dependence, two parallel reaction pathways for oxygen reduction could be identified. Above 450 °C, a surface path with a rate determining step located at the three phase boundary is predominant. Its polarization resistance is independent of the Pt grain size and exhibits an activation energy of ca. 1.8 eV. In the low temperature regime (< 450 °C) a bulk path through Pt was verified, with an electrode polarization resistance depending on the Pt grain size. This resistance is only slightly thermally activated and the rate limiting step is most probably oxygen diffusion along Pt grain boundaries.