Published in

Elsevier, Atmospheric Environment, 15(45), p. 2559-2568

DOI: 10.1016/j.atmosenv.2011.02.016

Links

Tools

Export citation

Search in Google Scholar

The influence of fog and airmass history on aerosol optical, physical and chemical properties at Pt. Reyes National Seashore

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

This paper presents an analysis of the aerosol chemical composition, optical properties and size distributions for a range of conditions encountered during a field measurement campaign conducted between July 7-29, 2005 at Point Reyes National Seashore, north of San Francisco, CA. The fractional mass loading derived from hourly measurements of an Aerodyne Mass Spectrometer (AMS) during this period are compared with filter-pack measurements from the Pt. Reyes IMPROVE station with good agreement found between the two if it assumed that chloride is primarily from large sea-salt particles (not measured by the AMS). During the first half of the campaign (July 7-17), conditions at the site were largely maritime while flow during the second half of the campaigns (July 18-29) was influenced by a thermal trough that added a cyclonic twist to the incoming marine air, bringing it from the south with a more extensive over-land trajectory. Neither flow regime was associated with air coming from the San Francisco Bay area to the south. The AMS measurements are partitioned into clear and foggy conditions which are then used to calculate the equivalent molar ratio of ammonium to the sum of sulfate, nitrate and chloride. Ratios calculated from measurements made before the onset of the thermal trough on July 18th were associated with acidic or near-neutral particles. Measurements made after July 18th yield ratios that appear to have excess ammonium. Model calculations of the equilibrium gas-phase mixing ratio of NH3 suggest very high values which we attribute to agricultural practices within the park. Reported as an incidental finding is evidence for the cloud droplet activation of large particles (D-p > 0.2 mu m) with a corresponding reduction in the single scattering albedo of the non-activated particles, followed by a return in the particle size spectrum to the pre-fog conditions immediately afterwards.