Elsevier, Biophysical Journal, 3(102), p. 391a, 2012
DOI: 10.1016/j.bpj.2011.11.2138
Wiley, Proteins: Structure, Function, and Bioinformatics, 2(80), p. 519-529, 2011
DOI: 10.1002/prot.23217
Full text: Download
The general transcription factor TFIIF plays essential roles at several steps during eukaryotic transcription. While several studies have offered insights into the structure/function relationship in human TFIIF, much less is known about the yeast system. Here, we describe the first NMR structural and binding studies of the C-terminal domains (CTDs) of Tfg1 and Tfg2 subunits of Saccharomyces cerevisiae TFIIF. We used the program CS-ROSETTA to determine the three-dimensional folds of these domains in solution, and performed binding studies with DNA and protein targets. CS-ROSETTA models indicate that the Tfg1 and Tfg2 C-terminal domains have winged-helix architectures, similar to the human homologs. We showed that both Tfg1 and Tfg2 CTDs interact with double-stranded DNA oligonucleotides, and mapped the DNA binding interfaces using solution NMR. Tfg1-CTD, but not Tfg2-CTD, also binds to yeast FCP1, an RNA polymerase II-specific phosphatase, and we delineated the interaction surface with the CTD of FCP1. Our results provide insights into the structural basis of yeast TFIIF function and the differential roles of Tfg1 and Tfg2 subunits during transcription. Proteins 2011. © 2011 Wiley Periodicals, Inc.