Published in

Association for Computing Machinery (ACM), ACM Transactions on Applied Perception, 1(12), p. 1-13, 2015

DOI: 10.1145/2699266

Links

Tools

Export citation

Search in Google Scholar

Depth Artifacts Caused by Spatial Interlacing in Stereoscopic 3D Displays

Journal article published in 2015 by Jussi H. Hakala, Pirkko Oittinen, Jukka P. Häkkinen ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Most spatially interlacing stereoscopic 3D displays display odd and even rows of an image to either the left or the right eye of the viewer. The visual system then fuses the interlaced image into a single percept. This row-based interlacing creates a small vertical disparity between the images; however, interlacing may also induce horizontal disparities, thus generating depth artifacts. Whether people perceive the depth artifacts and, if so, what is the magnitude of the artifacts are unknown. In this study, we hypothesized and tested if people perceive interlaced edges on different depth levels. We tested oblique edge orientations ranging from 2 degrees to 32 degrees and pixel sizes ranging from 16 to 79 arcsec of visual angle in a depth probe experiment. Five participants viewed the visual stimuli through a stereoscope under three viewing conditions: noninterlaced, interlaced, and row averaged (i.e., where even and odd rows are averaged). Our results indicated that people perceive depth artifacts when viewing interlaced stereoscopic images and that these depth artifacts increase with pixel size and decrease with edge orientation angle. A pixel size of 32 arcsec of visual angle still evoked depth percepts, whereas 16 arcsec did not. Row-averaging images effectively eliminated these depth artifacts. These findings have implications for display design, content production, image quality studies, and stereoscopic games and software.